2 research outputs found

    Design and Development of a Single-Axis Solar Tracking System

    Get PDF
    With solar tracking, it will become possible to generate more energy since the solar panel can maintain a perpendicular profile to the rays of the sun. Even though the initial cost of setting up the tracking system is considerably high, there are cheaper options that have been proposed over time. This research discuss the design and construction of a prototype for a solar tracking system that has a single axis of freedom. Light Dependent Resistors (LDRs) are used for sunlight detection. The control circuit is based on an ATMega328P microcontroller. It was programmed to detect sunlight via the LDRs before actuating the servo to position the solar panel. The solar panel is positioned where it is able to receive maximum light. As compared to other motors, the servo motors are able to maintain their torque at high speed. They are also more efficient with efficiencies in the range of 80-90%. Servos can supply roughly twice their rated torque for short periods. Through tracking, there will be increased exposure of the panel to the sun, making it have increased power output. The trackers can either be dual or single axis trackers. As a single tracking system is cheaper, less complex, and still achieves the required efficiency, so it was used

    Smart detection and prevention procedure for DoS attack in MANET

    Get PDF
    A self-organized wireless communication short-lived network containing collection of mobile nodes is mobile ad hoc network (MANET). The mobile nodes communicate with each other by wireless radio links without the use of any pre-established fixed communication network infrastructure or centralized administration, such as base stations or access points, and with no human intervention. In addition, this network has potential applications in conference, disaster relief, and battlefield scenario, and have received important attention in current years. There is some security concern that increases fear of attacks on the mobile ad-hoc network. The mobility of the NODE in a MANET poses many security problems and vulnerable to different types of security attacks than conventional wired and wireless networks. The causes of these issues are due to their open medium, dynamic network topology, absence of central administration, distributed cooperation, constrained capability, and lack of clear line of defense. Without proper security, mobile hosts are easily captured, compromised, and attacked by malicious nodes. Malicious nodes behavior may deliberately disrupt the network so that the whole network will be suffering from packet losses. One of the major concerns in mobile ad-hoc networks is a traffic DoS attack in which the traffic is choked by the malicious node which denied network services for the user. Mobile ad-hoc networks must have a safe path for transmission and correspondence which is a serious testing and indispensable issue. So as to provide secure communication and transmission, the scientist worked explicitly on the security issues in versatile impromptu organizations and many secure directing conventions and security measures within the networks were proposed. The goal of the work is to study DoS attacks and how it can be detected in the network. Existing methodologies for finding a malicious node that causes traffic jamming is based on node’s retains value. The proposed approach finds a malicious node using reliability value determined by the broadcast reliability packet (RL Packet). In this approach at the initial level, every node has zero reliability value, specific time slice, and transmission starts with a packet termed as reliability packet, node who responded properly in specific time, increases its reliability value and those nodes who do not respond in a specific time decreases their reliability value and if it goes to less than zero then announced that it’s a malicious node. Reliability approach makes service availability and retransmission time
    corecore